Biological Insights from Single-Particle Tracking in Living Cells

نویسندگان

  • ARASH SANAMRAD
  • Achillefs Kapanidis
چکیده

Sanamrad, A. 2014. Biological Insights from Single-Particle Tracking in Living Cells. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1159. 65 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-8991-5. Single-particle tracking is a technique that allows for quantitative analysis of the localization and movement of particles. In this technique, trajectories are constructed by determining and connecting the positions of individual particles from consecutive images. Recent advances have made it possible to track hundreds of particles in an individual cell by labeling the particles of interest with photoactivatable or photoconvertible fluorescent proteins and tracking one or a few at a time. Single-particle tracking can be used to study the diffusion of particles. Here, we use intracellular single-particle tracking and trajectory simulations to study the diffusion of the fluorescent protein mEos2 in living Escherichia coli cells. Our data are consistent with a simple model in which mEos2 diffuses normally at 13 μm s in the E. coli cytoplasm. Our approach can be used to study the diffusion of intracellular particles that can be labeled with mEos2 and are present at high copy numbers. Single-particle tracking can also be used to determine whether an individual particle is bound or free if the free particle diffuses significantly faster than its binding targets and remains bound or free for a long time. Here, we use single-particle tracking in living E. coli cells to determine the fractions of free ribosomal subunits, classify individual subunits as free or mRNAbound, and quantify the degree of exclusion of bound and free subunits separately. We show that, unlike bound subunits, free subunits are not excluded from the nucleoid. This finding strongly suggests that translation of nascent mRNAs can start throughout the nucleoid, which reconciles the spatial separation of DNA and ribosomes with co-transcriptional translation. We also show that, after translation inhibition, free subunit precursors are partially excluded from the compacted nucleoid. This finding indicates that it is active translation that normally allows ribosomal subunits to assemble on nascent mRNAs throughout the nucleoid and that the effects of translation inhibitors are enhanced by the limited access of ribosomal subunits to nascent mRNAs in the compacted nucleoid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of progress in single particle tracking: from methods to biophysical insights.

Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness. The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems. Amongst these techniques, single particle tracking (SPT) has emerged as a po...

متن کامل

Automated single particle detection and tracking for large microscopy datasets

Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluoresc...

متن کامل

Single-particle tracking photoactivated localization microscopy for mapping single-molecule dynamics.

Recent developments in single-molecule localization techniques using photoactivatable fluorescent proteins have allowed the probing of single-molecule motion in a living cell with high specificity, millisecond time resolution, and nanometer spatial resolution. Analyzing the dynamics of individual molecules at high densities in this manner promises to provide new insights into the mechanisms of ...

متن کامل

Advances in live-cell single-particle tracking and dynamic super-resolution imaging.

Resolving the movement of individual molecules in living cells by single particle tracking methods has allowed many molecular behaviors to be deciphered over the past three decades. These methods have increasingly benefited from advances in microscopy of single nano-objects such as fluorescent dye molecules, proteins or nanoparticles as well as tiny absorbing metal nanoparticles. In parallel to...

متن کامل

Using single-particle tracking to study nuclear trafficking of viral genes.

The question of how genetic materials are trafficked in and out of the cell nucleus is a problem of great importance not only for understanding viral infections but also for advancing gene-delivery technology. Here we demonstrate a physical technique that allows gene trafficking to be studied at the single-gene level by combining sensitive fluorescence microscopy with microinjection. As a model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014